/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2026 Arrive. * Author: D. Rice * * Version: 0.1 * * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stm32g4xx_hal.h" #define FILTER_SIZE 128 /* Must be a power of 2 for optimal bit-shifting (e.g., 8, 16, 32, 64) */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ typedef struct { uint16_t buffer[FILTER_SIZE]; /* Circular buffer to hold N samples */ uint32_t sum; /* Running sum of all samples */ uint8_t index; /* Current position in the buffer */ } MovingAverageFilter; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define IN_SYNC_BYTE_1 'A' #define IN_SYNC_BYTE_2 'R' /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim16; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ uint8_t fw_rev_h = 0; uint8_t fw_rev_l = 1; uint8_t rx_hold_buffer[2]; uint8_t rx_buffer[32]; uint8_t tx_buffer[32]; uint8_t tx_len = 0x00; uint8_t tx_len_counter = 0x00; uint8_t rx_counter = 0x00; uint8_t rx_len = 0x00; uint8_t rx_len_counter = 0x00; uint16_t rx_checksum = 0x0000; uint16_t tx_checksum = 0x0000; uint8_t rx_checksum_hold_1 = 0x00; uint8_t rx_checksum_hold_2 = 0x00; uint16_t rx_checksum_hold = 0x0000; uint8_t power_state_value = 0x00; uint8_t command = 0x00; uint8_t adc_task_flag = 0x00; uint16_t vin_adc_val = 0x0000; uint16_t vout_adc_val = 0x0000; uint16_t vout_adc_val_av = 0x0000; uint32_t vdd_ref = 0x00000000; uint32_t vin_val = 0x00000000; uint32_t vout_val = 0x00000000; uint32_t v_target = 0x00000000; uint8_t vset_task_flag = 0x00; uint8_t serial_number_flag = 0x00; uint8_t serial_number[19] = "ARRIVE-POWERSIM-001"; /* Initialise MA filter */ MovingAverageFilter movavFilter; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART2_UART_Init(void); static void MX_ADC2_Init(void); static void MX_TIM2_Init(void); static void MX_ADC1_Init(void); static void MX_TIM16_Init(void); /* USER CODE BEGIN PFP */ void power_switch (uint8_t state); void adc_task(void); uint32_t get_actual_vdda(ADC_HandleTypeDef *hadc); void voltage_conversion_task(void); void voltage_conversion_task_no_tx(void); uint32_t get_divider_input_mv(uint32_t raw_adc_value, uint32_t vdda_mv); void serial_number_task (void); void MA_Init(MovingAverageFilter *filter); uint16_t MA_Update(MovingAverageFilter *filter, uint16_t new_sample); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART2_UART_Init(); MX_ADC2_Init(); MX_TIM2_Init(); MX_ADC1_Init(); MX_TIM16_Init(); /* USER CODE BEGIN 2 */ /*Configure GPIO pin output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /* Run ADC calibration */ HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED); HAL_ADCEx_Calibration_Start(&hadc2, ADC_SINGLE_ENDED); /* Setup UART interrupts */ /* Make sure UART Rx counters and flags are reset */ rx_counter = 0x00; rx_len = 0x00; rx_len_counter = 0x00; adc_task_flag = 0x00; HAL_UART_Receive_IT(&huart2, rx_hold_buffer, 1); /* Get real VDDA value */ vdd_ref = get_actual_vdda(&hadc1); /* Start output PWM at zero */ __HAL_TIM_SET_COMPARE(&htim16, TIM_CHANNEL_1, 0); HAL_TIM_PWM_Start(&htim16, TIM_CHANNEL_1); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { if (adc_task_flag == 0xff) { adc_task_flag = 0x00; if (vset_task_flag != 0xff) { adc_task(); vout_adc_val_av = MA_Update (&movavFilter, vout_adc_val); } voltage_conversion_task(); } if (serial_number_flag == 0xff) { serial_number_flag = 0x00; serial_number_task (); } if (vset_task_flag == 0xff) { __HAL_TIM_SET_COMPARE(&htim16, TIM_CHANNEL_1, 300); adc_task(); vout_adc_val_av = MA_Update (&movavFilter, vout_adc_val); voltage_conversion_task_no_tx(); } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1; RCC_OscInitStruct.PLL.PLLN = 16; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV32; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.GainCompensation = 0; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_640CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV32; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.GainCompensation = 0; hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.NbrOfConversion = 2; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.DMAContinuousRequests = DISABLE; hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc2.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_3; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_640CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 128999; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief TIM16 Initialization Function * @param None * @retval None */ static void MX_TIM16_Init(void) { /* USER CODE BEGIN TIM16_Init 0 */ /* USER CODE END TIM16_Init 0 */ TIM_OC_InitTypeDef sConfigOC = {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; /* USER CODE BEGIN TIM16_Init 1 */ /* USER CODE END TIM16_Init 1 */ htim16.Instance = TIM16; htim16.Init.Prescaler = 1; htim16.Init.CounterMode = TIM_COUNTERMODE_UP; htim16.Init.Period = 63999; htim16.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim16.Init.RepetitionCounter = 0; htim16.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim16) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim16) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_PWM_ConfigChannel(&htim16, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.BreakFilter = 0; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if (HAL_TIMEx_ConfigBreakDeadTime(&htim16, &sBreakDeadTimeConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM16_Init 2 */ /* USER CODE END TIM16_Init 2 */ HAL_TIM_MspPostInit(&htim16); } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : LD2_Pin */ GPIO_InitStruct.Pin = LD2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ void Control_Loop_Update(uint32_t ) { // 1. Get filtered ADC raw and convert to mV uint16_t raw_adc = HAL_ADC_GetValue(&hadc1); uint16_t filtered_raw = MA_Update(filter, raw_adc); // Conversion (Example: 12-bit ADC on 3.3V Vref) uint16_t measured_mv = (uint16_t)(((uint32_t)filtered_raw * 3300) / 4095); // 2. Calculate Bidirectional Error // Positive error = need more power // Negative error = need less power int32_t error = (int32_t)SETPOINT_MV - (int32_t)measured_mv; // 3. Proportional Calculation float p_term = KP * (float)error; // 4. Adjust the Duty Cycle static float current_duty = 500.0f; // Start at 50% current_duty += p_term; // 5. Anti-Windup / Saturation (Crucial for bidirectional) // Prevents the PWM from trying to go to -50% or 200% if (current_duty > MAX_PWM) current_duty = (float)MAX_PWM; if (current_duty < 0.0f) current_duty = 0.0f; // 6. Update STM32 Hardware __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, (uint32_t)current_duty); } void MA_Init(MovingAverageFilter *filter) { for (int i = 0; i < FILTER_SIZE; i++) { filter->buffer[i] = 0; } filter->sum = 0; filter->index = 0; } uint16_t MA_Update(MovingAverageFilter *filter, uint16_t new_sample) { /* Subtract the oldest value from the running sum */ filter->sum -= filter->buffer[filter->index]; /* Add the new value to the running sum */ filter->sum += new_sample; /* Store the new value in the buffer, overwriting the oldest one */ filter->buffer[filter->index] = new_sample; /* Move the index to the next position (circular buffer wrap-around) */ filter->index++; filter->index &= (FILTER_SIZE - 1); /* Equivalent to: if (filter->index >= FILTER_SIZE) filter->index = 0; */ /* Calculate the average using bit-shifting (faster than division by power of 2) */ /* For FILTER_SIZE = 16, this is a right shift by 4 bits (sum / 16) */ /* If used 32, it would be sum >> 5 */ return (uint16_t)(filter->sum >> 7); } uint32_t get_actual_vdda(ADC_HandleTypeDef *hadc) { uint32_t vrefint_raw = 0; /* Perform ADC reading of the VREFINT channel */ HAL_ADC_Start(hadc); if (HAL_ADC_PollForConversion(hadc, 10) == HAL_OK) { vrefint_raw = HAL_ADC_GetValue(hadc); } HAL_ADC_Stop(hadc); if (vrefint_raw == 0) return 0; /* Avoid division by zero */ /* Use the standard ST formula to calculate VDDA */ /* VDDA = VREFINT_CAL_VREF * VREFINT_CAL / VREFINT_DATA */ uint32_t vdda_mv = (VREFINT_CAL_VREF * (uint32_t)(*VREFINT_CAL_ADDR)) / vrefint_raw; return vdda_mv; } /* Calculate original input voltage from a 22k/2.2k divider in mV */ uint32_t get_divider_input_mv(uint32_t raw_adc_value, uint32_t vdda_mv) { /* Calculate the voltage at the ADC pin (Vout of the divider) */ /* Using 64-bit for intermediate to avoid overflow: (Raw * VDDA) / 4095 */ uint64_t vout_mv = ((uint64_t)raw_adc_value * vdda_mv) / 4095; /* Scale by the divider ratio: (22k + 2.2k) / 2.2k = 11 */ uint32_t vin_mv = (uint32_t)(vout_mv * 10.9); return vin_mv; } /* Voltage Conversion Task */ void voltage_conversion_task(void) { /* Get Vin voltage */ vin_val = get_divider_input_mv(vin_adc_val, vdd_ref); /* Get Vout voltage */ vout_val = get_divider_input_mv(vout_adc_val_av, vdd_ref); tx_len = 0x08; tx_buffer[0] = IN_SYNC_BYTE_1; tx_buffer[1] = IN_SYNC_BYTE_2; tx_buffer[2] = tx_len; tx_buffer[3] = (uint8_t)((vin_val >> 24) & 0xFF); tx_buffer[4] = (uint8_t)((vin_val >> 16) & 0xFF); tx_buffer[5] = (uint8_t)((vin_val >> 8) & 0xFF); tx_buffer[6] = (uint8_t)(vin_val & 0xFF); tx_buffer[7] = (uint8_t)((vout_val >> 24) & 0xFF); tx_buffer[8] = (uint8_t)((vout_val >> 16) & 0xFF); tx_buffer[9] = (uint8_t)((vout_val >> 8) & 0xFF); tx_buffer[10] = (uint8_t)(vout_val & 0xFF); /* Need to apply checksum to all data bits */ for (tx_len_counter = 0x00; tx_len_counter < tx_len; tx_len_counter++) { tx_checksum += tx_buffer[tx_len_counter + 3]; } tx_checksum = ~tx_checksum; tx_buffer[11] = (uint8_t)((tx_checksum >> 8) & 0xFF); tx_buffer[12] = (uint8_t)(tx_checksum & 0xFF); tx_len = 0x0D; HAL_UART_Transmit(&huart2, tx_buffer, tx_len, 100); } /* Voltage Conversion Task with No UART Tx */ void voltage_conversion_task_no_tx(void) { /* Get Vout voltage */ vout_val = get_divider_input_mv(vout_adc_val_av, vdd_ref); } void serial_number_task (void) { tx_len = 0x13; tx_buffer[0] = IN_SYNC_BYTE_1; tx_buffer[1] = IN_SYNC_BYTE_2; for (tx_len_counter = 0x00; tx_len_counter < tx_len; tx_len_counter++) { tx_buffer[tx_len_counter + 3] = serial_number[tx_len_counter]; } tx_buffer[tx_len + 3] = 0x3A; tx_buffer[tx_len + 4] = fw_rev_h + 0x30; tx_buffer[tx_len + 5] = fw_rev_l + 0x30; tx_len = 0x16; tx_buffer[2] = tx_len; tx_checksum = 0x00; /* Need to apply checksum to all data bits */ for (tx_len_counter = 0x00; tx_len_counter < tx_len; tx_len_counter++) { tx_checksum += tx_buffer[tx_len_counter + 3]; } tx_checksum = ~tx_checksum; tx_buffer[tx_len + 3] = (uint8_t)((tx_checksum >> 8) & 0xFF); tx_buffer[tx_len + 4] = (uint8_t)(tx_checksum & 0xFF); tx_len = 0x1B; HAL_UART_Transmit(&huart2, tx_buffer, tx_len, 100); } /* ADC task */ void adc_task (void) { HAL_ADC_Start(&hadc2); HAL_ADC_PollForConversion(&hadc2, 500); vout_adc_val = HAL_ADC_GetValue(&hadc2); HAL_ADC_Start(&hadc2); HAL_ADC_PollForConversion(&hadc2, 500); vin_adc_val = HAL_ADC_GetValue(&hadc2); HAL_ADC_Stop(&hadc2); } /* Power switch function */ void power_switch (uint8_t state) { if (state == 1) { vset_task_flag = 0xFF; HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET); } else { vset_task_flag = 0x00; __HAL_TIM_SET_COMPARE(&htim16, TIM_CHANNEL_1, 0); HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); } } /* UART Tx callback */ void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) { /* Do nothing here for now */ } /* UART Rx callback */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { /* If data received on UART */ if(huart->Instance==USART2) { /* Act on received data */ switch (rx_counter) { case 0x00: /* Check to see if first sync byte has been received */ if (rx_hold_buffer[0] == IN_SYNC_BYTE_1) { /* Got it, so now wait for the second sync byte */ rx_counter++; } break; case 0x01: /* Check to see if second sync byte has been received */ if (rx_hold_buffer[0] == IN_SYNC_BYTE_2) { /* Got it, so now wait for the data byte */ rx_counter++; } else { /* Not got the second sync byte */ /* If first sync byte found here, then still wait for second */ if (rx_hold_buffer[0] == IN_SYNC_BYTE_1) { /* Got it, so now wait for the second sync byte */ rx_counter = 0x01; } /* Otherwise start again and wait for first sync byte */ else { rx_counter = 0x00; } } break; case 0x02: /* Get rx length and reset counter */ rx_len = rx_hold_buffer[0]; rx_len_counter = 0x00; rx_counter++; break; case 0x03: /* Store entire length of Data bytes */ /* Increase count */ rx_len_counter++; /* Store data */ rx_buffer[rx_len_counter - 1] = rx_hold_buffer[0]; /* Check to see if we have all the expected data bytes */ /* If so, then move on the CRC */ if (rx_len_counter == rx_len) { rx_counter++; rx_len_counter = 0x00; } break; case 0x04: /* Store Rx checksum byte #1 */ rx_checksum_hold_1 = rx_hold_buffer[0]; rx_counter++; break; case 0x05: /* Store Rx checksum byte #2, reset and calculate checksum */ rx_checksum_hold_2 = rx_hold_buffer[0]; rx_checksum_hold = (rx_checksum_hold_1 << 8) | rx_checksum_hold_2; rx_checksum = 0; /* Need to apply to all data bits */ for (rx_len_counter = 0x00; rx_len_counter < rx_len; rx_len_counter++) { rx_checksum += rx_buffer[rx_len_counter]; } rx_len = 0x00; rx_len_counter = 0x00; rx_checksum = ~rx_checksum; /* If checksum calculated equals the received checksum of packet then we got a good packet */ if (rx_checksum == rx_checksum_hold) { /* Rx is finished, so reset count to wait for another first sync byte (also act on command/data)*/ rx_counter = 0x00; command = rx_buffer[0]; switch (command) { /* 'S' - Set power output state */ case 0x53: power_state_value = rx_buffer[1]; v_target = ((uint32_t)rx_buffer[2] << 24) | ((uint32_t)rx_buffer[3] << 16) | ((uint32_t)rx_buffer[4] << 8) | ((uint32_t)rx_buffer[5]); MA_Init(&movavFilter); power_switch(power_state_value); break; /* 'V' - Get voltages (both input and output) */ case 0x56: adc_task_flag = 0xff; break; /* 'I' - Get serial number information */ case 0x49: serial_number_flag = 0xff; break; default: break; } } /* Bad packet received */ else { /* Rx is finished, so reset count to wait for another first sync byte (bad packet so no flag)*/ rx_counter = 0x00; } break; /* Default case - NOT USED!*/ default: break; } /* Reset interrupts */ HAL_UART_Receive_IT(&huart2, rx_hold_buffer, 1); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */