Files

1012 lines
24 KiB
C
Raw Permalink Normal View History

2026-01-06 19:10:54 +00:00
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
2026-01-19 14:56:14 +00:00
* Copyright (c) 2026 Arrive.
* Author: D. Rice
*
* Version: 0.1
2026-01-06 19:10:54 +00:00
*
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32g4xx_hal.h"
2026-01-28 12:16:24 +00:00
#include <stdint.h>
#include <string.h>
#define AVG_WINDOW 32
2026-01-20 16:51:04 +00:00
2026-01-06 19:10:54 +00:00
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
2026-01-20 16:51:04 +00:00
typedef struct
{
2026-01-28 12:16:24 +00:00
uint32_t buffer[AVG_WINDOW];
uint8_t index;
uint32_t sum;
} ADC_Filter;
2026-01-06 19:10:54 +00:00
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define IN_SYNC_BYTE_1 'A'
#define IN_SYNC_BYTE_2 'R'
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
TIM_HandleTypeDef htim2;
2026-01-20 16:51:04 +00:00
TIM_HandleTypeDef htim16;
2026-01-06 19:10:54 +00:00
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
2026-01-19 14:56:14 +00:00
uint8_t fw_rev_h = 0;
uint8_t fw_rev_l = 1;
2026-01-06 19:10:54 +00:00
uint8_t rx_hold_buffer[2];
uint8_t rx_buffer[32];
uint8_t tx_buffer[32];
uint8_t tx_len = 0x00;
2026-01-08 11:31:22 +00:00
uint8_t tx_len_counter = 0x00;
2026-01-06 19:10:54 +00:00
uint8_t rx_counter = 0x00;
uint8_t rx_len = 0x00;
uint8_t rx_len_counter = 0x00;
uint16_t rx_checksum = 0x0000;
2026-01-08 11:31:22 +00:00
uint16_t tx_checksum = 0x0000;
2026-01-06 19:10:54 +00:00
uint8_t rx_checksum_hold_1 = 0x00;
uint8_t rx_checksum_hold_2 = 0x00;
uint16_t rx_checksum_hold = 0x0000;
uint8_t power_state_value = 0x00;
uint8_t command = 0x00;
uint8_t adc_task_flag = 0x00;
2026-01-28 12:16:24 +00:00
float vdd_ref = 0;
uint32_t vdd_ref_uint = 0x00000000;
2026-01-20 16:51:04 +00:00
uint32_t v_target = 0x00000000;
uint8_t vset_task_flag = 0x00;
2026-01-08 11:31:22 +00:00
uint8_t serial_number_flag = 0x00;
uint8_t serial_number[19] = "ARRIVE-POWERSIM-001";
2026-01-28 12:16:24 +00:00
uint16_t pwm_value = 0x0000;
uint32_t pwm_value_store = 0x00000000;
uint32_t vout_adc_val = 0x0000000;
uint32_t filtered_adc = 0x0000000;
uint32_t pwm_max = 20000;
float vout = 0;
float vout_adj = 0;
uint32_t vout_adj_uint = 0x00000000;
uint8_t buffer_count = 0x00;
uint32_t v_scale = 0x00000000;
/* Stored in RAM */
const uint16_t dataBuffer[25] =
{
0x0000,
0x000A,
0x00B5,
0x00C6,
0x00D5,
0x00E3,
0x00F2,
0x0100,
0x010F,
0x011E,
0x012D,
0x013D,
0x014E,
0x0163,
0x017B,
0x0195,
0x01B2,
0x01D0,
0x01F6,
0x021A,
0x0244,
0x0272,
0x02A2,
0x02D8,
0x0311
};
ADC_Filter v_out_filter;
2026-01-20 16:51:04 +00:00
2026-01-06 19:10:54 +00:00
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC2_Init(void);
static void MX_TIM2_Init(void);
static void MX_ADC1_Init(void);
2026-01-20 16:51:04 +00:00
static void MX_TIM16_Init(void);
2026-01-06 19:10:54 +00:00
/* USER CODE BEGIN PFP */
void power_switch (uint8_t state);
void adc_task(void);
2026-01-28 12:16:24 +00:00
float get_actual_vdda(ADC_HandleTypeDef *hadc);
2026-01-08 11:31:22 +00:00
void voltage_conversion_task(void);
void serial_number_task (void);
2026-01-28 12:16:24 +00:00
int32_t update_pwm(uint32_t measured_mv);
void ADC_Filter_Init(ADC_Filter *f);
uint32_t ADC_Filter_Update(ADC_Filter *f, uint32_t new_sample);
2026-01-06 19:10:54 +00:00
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
MX_ADC2_Init();
MX_TIM2_Init();
MX_ADC1_Init();
2026-01-20 16:51:04 +00:00
MX_TIM16_Init();
2026-01-06 19:10:54 +00:00
/* USER CODE BEGIN 2 */
/*Configure GPIO pin output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
2026-01-08 11:31:22 +00:00
/* Run ADC calibration */
HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED);
HAL_ADCEx_Calibration_Start(&hadc2, ADC_SINGLE_ENDED);
2026-01-06 19:10:54 +00:00
/* Setup UART interrupts */
/* Make sure UART Rx counters and flags are reset */
rx_counter = 0x00;
rx_len = 0x00;
rx_len_counter = 0x00;
adc_task_flag = 0x00;
2026-01-28 12:16:24 +00:00
pwm_value = 0x0000;
2026-01-06 19:10:54 +00:00
HAL_UART_Receive_IT(&huart2, rx_hold_buffer, 1);
/* Get real VDDA value */
vdd_ref = get_actual_vdda(&hadc1);
2026-01-20 16:51:04 +00:00
/* Start output PWM at zero */
__HAL_TIM_SET_COMPARE(&htim16, TIM_CHANNEL_1, 0);
HAL_TIM_PWM_Start(&htim16, TIM_CHANNEL_1);
2026-01-06 19:10:54 +00:00
2026-01-28 12:16:24 +00:00
ADC_Filter_Init(&v_out_filter);
2026-01-06 19:10:54 +00:00
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
2026-01-28 12:16:24 +00:00
2026-01-06 19:10:54 +00:00
while (1)
{
if (adc_task_flag == 0xff)
{
adc_task_flag = 0x00;
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
tx_len = 0x04;
tx_buffer[0] = IN_SYNC_BYTE_1;
tx_buffer[1] = IN_SYNC_BYTE_2;
tx_buffer[2] = tx_len;
tx_buffer[3] = (uint8_t)((vout_adj_uint >> 24) & 0xFF);
tx_buffer[4] = (uint8_t)((vout_adj_uint >> 16) & 0xFF);
tx_buffer[5] = (uint8_t)((vout_adj_uint >> 8) & 0xFF);
tx_buffer[6] = (uint8_t)(vout_adj_uint & 0xFF);
/* Need to apply checksum to all data bits */
for (tx_len_counter = 0x00; tx_len_counter < tx_len; tx_len_counter++)
{
tx_checksum += tx_buffer[tx_len_counter + 3];
}
tx_checksum = ~tx_checksum;
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
tx_buffer[7] = (uint8_t)((tx_checksum >> 8) & 0xFF);
tx_buffer[8] = (uint8_t)(tx_checksum & 0xFF);
tx_len = 0x13;
HAL_UART_Transmit(&huart2, tx_buffer, tx_len, 100);
2026-01-06 19:10:54 +00:00
}
2026-01-08 11:31:22 +00:00
if (serial_number_flag == 0xff)
2026-01-06 19:10:54 +00:00
{
2026-01-08 11:31:22 +00:00
serial_number_flag = 0x00;
serial_number_task ();
2026-01-06 19:10:54 +00:00
}
2026-01-08 11:31:22 +00:00
2026-01-20 16:51:04 +00:00
if (vset_task_flag == 0xff)
{
adc_task();
2026-01-28 12:16:24 +00:00
filtered_adc = ADC_Filter_Update(&v_out_filter, vout_adc_val);
vout = ((float)filtered_adc / 4095.0f) * vdd_ref;
vout_adj = vout * 10.9f;
vout_adj_uint = (uint32_t)vout_adj;
pwm_value_store = update_pwm(vout_adj_uint);
pwm_value = (uint16_t)pwm_value_store;
__HAL_TIM_SET_COMPARE(&htim16, TIM_CHANNEL_1, pwm_value);
2026-01-21 15:40:46 +00:00
}
2026-01-28 12:16:24 +00:00
2026-01-21 15:40:46 +00:00
else
{
__HAL_TIM_SET_COMPARE(&htim16, TIM_CHANNEL_1, 0);
2026-01-20 16:51:04 +00:00
}
2026-01-28 12:16:24 +00:00
2026-01-06 19:10:54 +00:00
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
RCC_OscInitStruct.PLL.PLLN = 16;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
2026-01-08 11:31:22 +00:00
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV32;
2026-01-06 19:10:54 +00:00
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.GainCompensation = 0;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = ADC_REGULAR_RANK_1;
2026-01-08 11:31:22 +00:00
sConfig.SamplingTime = ADC_SAMPLETIME_640CYCLES_5;
2026-01-06 19:10:54 +00:00
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief ADC2 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC2_Init(void)
{
/* USER CODE BEGIN ADC2_Init 0 */
/* USER CODE END ADC2_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC2_Init 1 */
/* USER CODE END ADC2_Init 1 */
/** Common config
*/
hadc2.Instance = ADC2;
2026-01-08 11:31:22 +00:00
hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV32;
2026-01-06 19:10:54 +00:00
hadc2.Init.Resolution = ADC_RESOLUTION_12B;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.GainCompensation = 0;
2026-01-28 12:16:24 +00:00
hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE;
2026-01-06 19:10:54 +00:00
hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc2.Init.LowPowerAutoWait = DISABLE;
hadc2.Init.ContinuousConvMode = DISABLE;
2026-01-28 12:16:24 +00:00
hadc2.Init.NbrOfConversion = 1;
2026-01-06 19:10:54 +00:00
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc2.Init.DMAContinuousRequests = DISABLE;
hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc2.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc2) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_3;
sConfig.Rank = ADC_REGULAR_RANK_1;
2026-01-08 11:31:22 +00:00
sConfig.SamplingTime = ADC_SAMPLETIME_640CYCLES_5;
2026-01-06 19:10:54 +00:00
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC2_Init 2 */
/* USER CODE END ADC2_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
2026-01-28 12:16:24 +00:00
htim2.Init.Prescaler = 12800-1;
2026-01-06 19:10:54 +00:00
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
2026-01-28 12:16:24 +00:00
htim2.Init.Period = 99;
2026-01-06 19:10:54 +00:00
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
2026-01-20 16:51:04 +00:00
/**
* @brief TIM16 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM16_Init(void)
{
/* USER CODE BEGIN TIM16_Init 0 */
/* USER CODE END TIM16_Init 0 */
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM16_Init 1 */
/* USER CODE END TIM16_Init 1 */
htim16.Instance = TIM16;
htim16.Init.Prescaler = 1;
htim16.Init.CounterMode = TIM_COUNTERMODE_UP;
htim16.Init.Period = 63999;
htim16.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim16.Init.RepetitionCounter = 0;
htim16.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim16) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim16) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim16, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim16, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM16_Init 2 */
/* USER CODE END TIM16_Init 2 */
HAL_TIM_MspPostInit(&htim16);
}
2026-01-06 19:10:54 +00:00
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
2026-01-08 11:31:22 +00:00
huart2.Init.BaudRate = 115200;
2026-01-06 19:10:54 +00:00
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
2026-01-28 12:16:24 +00:00
void ADC_Filter_Init(ADC_Filter *f)
2026-01-20 16:51:04 +00:00
{
2026-01-28 12:16:24 +00:00
memset(f->buffer, 0, sizeof(f->buffer));
f->sum = 0;
f->index = 0;
}
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
uint32_t ADC_Filter_Update(ADC_Filter *f, uint32_t new_sample)
{
/* Remove the oldest sample from the running sum */
f->sum -= f->buffer[f->index];
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
/* Store the new sample in the buffer */
f->buffer[f->index] = new_sample;
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
/* Add the new sample to the sum */
f->sum += new_sample;
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
/* Move index to next position, wrap around if at end */
f->index++;
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
if (f->index >= AVG_WINDOW)
{
f->index = 0;
}
/* Return the average */
return f->sum / AVG_WINDOW;
2026-01-20 16:51:04 +00:00
}
2026-01-28 12:16:24 +00:00
int32_t update_pwm (uint32_t measured_mv)
2026-01-20 16:51:04 +00:00
{
2026-01-28 12:16:24 +00:00
/* Calculate Error */
int32_t new_pwm = 0;
uint8_t direction_flag = 0x00;
if (v_target >= measured_mv)
2026-01-20 16:51:04 +00:00
{
2026-01-28 12:16:24 +00:00
direction_flag = 0x00;
2026-01-20 16:51:04 +00:00
}
2026-01-28 12:16:24 +00:00
else
{
direction_flag = 0xFF;
}
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
if (direction_flag == 0xFF)
{
new_pwm = (uint32_t)pwm_value;
new_pwm--;
}
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
else
{
new_pwm = (uint32_t)pwm_value;
new_pwm++;
}
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
/* Output Saturation (Keep PWM within hardware limits) */
if (new_pwm > pwm_max)
{
new_pwm = pwm_max;
}
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
if (new_pwm <= 1)
{
new_pwm = 1;
}
2026-01-20 16:51:04 +00:00
2026-01-28 12:16:24 +00:00
return new_pwm;
2026-01-20 16:51:04 +00:00
}
2026-01-28 12:16:24 +00:00
float get_actual_vdda(ADC_HandleTypeDef *hadc)
2026-01-06 19:10:54 +00:00
{
uint32_t vrefint_raw = 0;
/* Perform ADC reading of the VREFINT channel */
HAL_ADC_Start(hadc);
2026-01-08 11:31:22 +00:00
2026-01-28 12:16:24 +00:00
if (HAL_ADC_PollForConversion(hadc, 10) == HAL_OK)
{
vrefint_raw = HAL_ADC_GetValue(hadc);
2026-01-06 19:10:54 +00:00
}
HAL_ADC_Stop(hadc);
2026-01-28 12:16:24 +00:00
if (vrefint_raw == 0)
{
return 0; /* Avoid division by zero */
}
2026-01-06 19:10:54 +00:00
/* Use the standard ST formula to calculate VDDA */
/* VDDA = VREFINT_CAL_VREF * VREFINT_CAL / VREFINT_DATA */
2026-01-28 12:16:24 +00:00
float vdda_mv = (VREFINT_CAL_VREF * (uint32_t)(*VREFINT_CAL_ADDR)) / (float)vrefint_raw;
2026-01-06 19:10:54 +00:00
return vdda_mv;
}
2026-01-08 11:31:22 +00:00
void serial_number_task (void)
{
tx_len = 0x13;
tx_buffer[0] = IN_SYNC_BYTE_1;
tx_buffer[1] = IN_SYNC_BYTE_2;
for (tx_len_counter = 0x00; tx_len_counter < tx_len; tx_len_counter++)
{
tx_buffer[tx_len_counter + 3] = serial_number[tx_len_counter];
}
2026-01-19 14:56:14 +00:00
tx_buffer[tx_len + 3] = 0x3A;
tx_buffer[tx_len + 4] = fw_rev_h + 0x30;
tx_buffer[tx_len + 5] = fw_rev_l + 0x30;
tx_len = 0x16;
tx_buffer[2] = tx_len;
2026-01-08 11:31:22 +00:00
tx_checksum = 0x00;
/* Need to apply checksum to all data bits */
for (tx_len_counter = 0x00; tx_len_counter < tx_len; tx_len_counter++)
{
tx_checksum += tx_buffer[tx_len_counter + 3];
}
tx_checksum = ~tx_checksum;
2026-01-19 14:56:14 +00:00
tx_buffer[tx_len + 3] = (uint8_t)((tx_checksum >> 8) & 0xFF);
tx_buffer[tx_len + 4] = (uint8_t)(tx_checksum & 0xFF);
2026-01-08 11:31:22 +00:00
2026-01-19 14:56:14 +00:00
tx_len = 0x1B;
2026-01-08 11:31:22 +00:00
HAL_UART_Transmit(&huart2, tx_buffer, tx_len, 100);
2026-01-06 19:10:54 +00:00
}
/* ADC task */
void adc_task (void)
{
HAL_ADC_Start(&hadc2);
2026-01-08 11:31:22 +00:00
HAL_ADC_PollForConversion(&hadc2, 500);
vout_adc_val = HAL_ADC_GetValue(&hadc2);
2026-01-06 19:10:54 +00:00
HAL_ADC_Stop(&hadc2);
}
/* Power switch function */
void power_switch (uint8_t state)
{
if (state == 1)
{
2026-01-20 16:51:04 +00:00
vset_task_flag = 0xFF;
2026-01-06 19:10:54 +00:00
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET);
2026-01-28 12:16:24 +00:00
v_scale = v_target / 1000;
buffer_count = (uint8_t)v_scale;
pwm_value = dataBuffer[buffer_count];
__HAL_TIM_SET_COMPARE(&htim16, TIM_CHANNEL_1, pwm_value);
2026-01-06 19:10:54 +00:00
}
else
{
2026-01-20 16:51:04 +00:00
vset_task_flag = 0x00;
2026-01-06 19:10:54 +00:00
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
2026-01-28 12:16:24 +00:00
__HAL_TIM_SET_COMPARE(&htim16, TIM_CHANNEL_1, 0);
2026-01-06 19:10:54 +00:00
}
}
/* UART Tx callback */
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
/* Do nothing here for now */
}
/* UART Rx callback */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
/* If data received on UART */
if(huart->Instance==USART2)
{
/* Act on received data */
switch (rx_counter)
{
case 0x00:
/* Check to see if first sync byte has been received */
if (rx_hold_buffer[0] == IN_SYNC_BYTE_1)
{
/* Got it, so now wait for the second sync byte */
rx_counter++;
}
break;
case 0x01:
/* Check to see if second sync byte has been received */
if (rx_hold_buffer[0] == IN_SYNC_BYTE_2)
{
/* Got it, so now wait for the data byte */
rx_counter++;
}
else
{
/* Not got the second sync byte */
/* If first sync byte found here, then still wait for second */
if (rx_hold_buffer[0] == IN_SYNC_BYTE_1)
{
/* Got it, so now wait for the second sync byte */
rx_counter = 0x01;
}
/* Otherwise start again and wait for first sync byte */
else
{
rx_counter = 0x00;
}
}
break;
case 0x02:
/* Get rx length and reset counter */
rx_len = rx_hold_buffer[0];
rx_len_counter = 0x00;
rx_counter++;
break;
case 0x03:
/* Store entire length of Data bytes */
/* Increase count */
rx_len_counter++;
/* Store data */
rx_buffer[rx_len_counter - 1] = rx_hold_buffer[0];
/* Check to see if we have all the expected data bytes */
/* If so, then move on the CRC */
if (rx_len_counter == rx_len)
{
rx_counter++;
rx_len_counter = 0x00;
}
break;
case 0x04:
/* Store Rx checksum byte #1 */
rx_checksum_hold_1 = rx_hold_buffer[0];
rx_counter++;
break;
case 0x05:
/* Store Rx checksum byte #2, reset and calculate checksum */
rx_checksum_hold_2 = rx_hold_buffer[0];
rx_checksum_hold = (rx_checksum_hold_1 << 8) | rx_checksum_hold_2;
rx_checksum = 0;
/* Need to apply to all data bits */
for (rx_len_counter = 0x00; rx_len_counter < rx_len; rx_len_counter++)
{
rx_checksum += rx_buffer[rx_len_counter];
}
rx_len = 0x00;
rx_len_counter = 0x00;
rx_checksum = ~rx_checksum;
/* If checksum calculated equals the received checksum of packet then we got a good packet */
if (rx_checksum == rx_checksum_hold)
{
/* Rx is finished, so reset count to wait for another first sync byte (also act on command/data)*/
rx_counter = 0x00;
command = rx_buffer[0];
switch (command)
{
/* 'S' - Set power output state */
case 0x53:
power_state_value = rx_buffer[1];
2026-01-20 16:51:04 +00:00
v_target = ((uint32_t)rx_buffer[2] << 24) | ((uint32_t)rx_buffer[3] << 16) | ((uint32_t)rx_buffer[4] << 8) | ((uint32_t)rx_buffer[5]);
2026-01-06 19:10:54 +00:00
power_switch(power_state_value);
break;
/* 'V' - Get voltages (both input and output) */
case 0x56:
adc_task_flag = 0xff;
break;
2026-01-08 11:31:22 +00:00
/* 'I' - Get serial number information */
case 0x49:
serial_number_flag = 0xff;
break;
2026-01-06 19:10:54 +00:00
default:
break;
}
}
/* Bad packet received */
else
{
/* Rx is finished, so reset count to wait for another first sync byte (bad packet so no flag)*/
rx_counter = 0x00;
}
break;
/* Default case - NOT USED!*/
default:
break;
}
/* Reset interrupts */
HAL_UART_Receive_IT(&huart2, rx_hold_buffer, 1);
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */